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MESH-CONNECTED PROCESSOR ARRAYS
FOR TIlE TRANSITIVE CLOSURE PROBLE'WM OS.T. 6-o0264 -

OSR- 64- Sailesh K. Rao, Todd Citron and Thomas Kailath
Information Systems Laboratory

Stanford University
Stanford, CA 94305.

Abstract ii. Analyze the algorithm and obtain various
The main purpose in this paper is to lay a theoretical foun- implementation-independent properties of the algo-
dation for the design of mesh-connected processor arrays rithm, including a valid computational schedule, and
for the transitive closure problem. Using a simple pat iii. Map the algorithm onto a mesh-connected processor
algebraic formulation of the problem and observing its simi- array for which the computed schedule can be applied.
larity to certain well-known smoothing problems that occur ar, we sh mnly cetae upn te firsteof

in digital signal processing, we show how to draw upon In this paper, we shall mainly concentrate upon the first of
e tthese steps. The other two steps are just applications of theexisting techniques from Lh signal processing literature to techniques developed in [3,4,171 and we shall only briefly

derive regular iterative algorithms for determining the tran- tecus evw
sitive closure of the graph. The regular iterative algorithms discuss them.
that are derived using these considerations, are then Organization of the Paper: The first step above is addressed
analyzed and synthesized on mesh-connected processor in Section 11. Here we shall show how to derive regular
arrays. Among the vast number of mesh-connected proces- iterative algorithms for solving the transitive closure prob-
sor arrays that can be designed using this unified approach, lcm. In particular, we shall obtain a mathematical formula-
the systolic arrays reported in the literature for this problem tion of the problem so as to expose its relation to a certain
are shown to be special cases. well known problem in signal processing. Thereupon, we

show how to use some established techniques in that field
I.Introduction for obtaining regular iterative algorithms for solving the

An interesting problem that often arises in various problem. The resulting algorithms comprise those given in
graph theoretic applications is the transitive closure prob- [1 and [21 as special cases. Once a Regular Iterative Algo-
lem. Here the objective is to determine whether or not there rithm is found, one can apply the techniques outlined in
exists a path between anypair of nodes in a directed graph. [3,4,171 to determine implementations for it. Some exam-
This problem has been addressed in the context of neural pies are given at the end of this section, though the actual
modeling, routing, decision making, circuit simulation, tran- details can be found in [19].
sportation problems etc. and a solution to this problem can In the interest of brevity, all the theorems and procedures
be easily adapted to determine the shortest(longest) path given in this paper are stated without proof. The interested
between two nodes in a weighted directed graph, the reader is referred to a longer version of this paper[191, for
number of paths between these two nodes (if the graph is the nitty-gritty details.
acyclic), for enumerating the paths themselves, for deter-
mining the set of strongly connected components in the II. Regular Iterative Algorithms for the Transitive Clo-
graph, for determining the minimum spanning trees of the sure Problem
graph, for determining the bridges in a graph and so on [51.

In the usual formulation of the problem, the graph is The design of regular iterative algorithms for the tran-
given in terms of its adjacency matrix A, where a, I if sitive closure problem is discussed in this section. An itera-
there is a directed arc in the graph from node i to node j, tive algorithm is said to be regular if it can be expressed as
and 0 otherwise. Then, the transitive closure of the graph is a set of functional relations as follows: For j = I to V do:
requested in the form of the matrix T where t,, = 1 if there
is a directed path in the graph from node i to node j, and o = fj(x.(-D.,, i:(I-O..), • • •( .

otherwise.
Systolic Architectures for solving this problem on a where V is some constant integer that determines the

mesh connected array of processors have been derived in nuniher of indexed variables used in the algorithm and I is
Guibas, Kung and Thompson [11 and recently in Kung and an s-dimensional integer vector that ranges over a
Lo[21. However, using the recently developed methodology prcspccificd set of points known as the index points. The
in [3,41. we can show that there are a vast number of sys- index points span a certain S-dimensional region known as
tolic configuration- for solving the problem. Indeed, any the Index Space. In addition, for a regular iterative algo-
systolic array solution for the matrix multiplication problem rithm, the vectors D).. are required to be independent of thecan he simply adapted to solve the transitive closure index point / and the 'extent' of the Index Space. More on
problem; it has been shown in [41 that there are 27 different regular iterative algorithms and their properties can be
array configurations with strictly nearest neighbour inter- found in [3,17,1SJ.
connections for matrix multiplication. Thus. there are that In the usual path-algebraic formulation of the transitive
many array configurations for solving the transitive closure closure problem. one determines the transitive closure ofproblem as well. Ihc methodology described in [3,4.171 for the graph by solving a set of linear equatons[6.8 over a
deducing these array configurations consists of the follow- semi-ring. Using this formulation, many known algorithms
ing steps: for solving linear equations, such as Gaussian elimination,
i. Determine a well-structured iterative algorithm (what is Gauss-Sicdel iteration or Gauss-Jordan elimination can be

known as a reRular iterative algorithm in [3,4,171) for simply modified to solve the transitive closure problem.
solving the problem, he resulting algorithms for the transitive closure problem

'u 1ork -is %-r'orted n pan t, Lockheed Stie$ and S.ce Com-an are better known in the graph-theoretic literature as Carre's
under Cor.-ct I Wii A.,4,F. by NASA Iieadquarrer. Cei-er fr Aerorj ,n.s algorithm[71, Ford-Fulkcrson's algorithm[9] and W arshall's
alnd Spce !nfcr ~n S,-ences ICAS:Si nder crini NAGA-41, and by the algorithm 101 (or Floyd's algorithm [li respectively.US Air Fcrce O f.ce of S,.-ennitc Resarcah Air force Sern Command. Furthermore, these algorithms can be written in a regular
under Contract ,:Sas-02:.s
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iterative format, and thus, using the techniques given in tire closure problem by computing the entrics of the T
[3,41, one can easily generate a multitude of mcsh connected matrix using cqn. (1), no matter how we order the compu-
processor implementations for the transitive closure prob- tation. This is because of the cyclic definition of the cle-
lcm. ments of the matrix in that, e.g., t, is dependent upon say,Even though there is such a striking relationship t., but t, is dependent upon t, for any k * j (See Fig.1).

between the algorithms given in [6-101 and certain well- This 'nonrecursible' situation often arises typically in the
known procclurcs for solving linear equations, there does recursive smoothing of (noisy) digital signals wherein it is
not seem to be an obvious correspondence between the usually handled using one of two main approaches:
transitive closure algorithm of Guibas, Kung and Thomp- i. Extended Filtering: For the transitive closure problem.
sonil] and any known linear algebraic procedure. In this this technique would correspond to solving a simpler
section, we shall show how one can obtain an alternative 'recursiblc' problem for an extended graph.
formulation of the transitive closure problem that bears a ii. Forwards-Backwards Filtering: In this approach, one
marked resemblance with certain well known problems in would attempt to recast eqn.(1) in a recursible form
digital signal processing. Thereupon, using certain known such that the problem can be solved by (possibly
signal processing techniques, we shall derive several regular repeated) 'forward' and 'backward' passes through the
iterative algorithms for solving the transitive closure prob- adjacency matrix.
lcm. These algorithms have no direct counterparts in linear
algebra, but have close relationships with known algorithms We shall mainly elaborate upon the first approach in
in recursive filtering. Furthermore, Guibas ct. al.'s algo- the rest of this section. Thus, we shall show that by solving
rithm is a special case of the algorithms that arc derived in a rccursiblc problem for a suitably extended gra ph, we can
this section using this approach. Curiosly enough, even obtain the transitive closure of the given graph. In addition,
Warshall's algorithm can be derived as a special case of we shall also characterize a family of extended graphs for
these algorithm which this property holds. For a graph with E directed arcs,

algorithms. this family has more than 2 e members. For this family of
Not only can the transitive closure problem be formu- extensions, we shall present an algorithm that can be

lated as a set of linear equations, it can also be determined applied on any member, to obtain the transitive closure of
by solving a set of Lyapunov equations, or by solving a set the given graph. We shall show that this algorithm, when
of matrix quadratic equations. For the purpose of this applied to one particular member of this family, can be
paper, the formulation of the problem as a set of quadratic related to the algorithm due to Guibas, Kung and Thomp-
equations is of interest, since this formulation exposes the son [11. We shall also show that the algorithm when spe-
similarity of the transitive closure problem with certain cialized to vet another member of this family, after suitable
image smoothing problems. In this formulation, the element 'folding' of the computation, is exactly the algorithm due to
in the ,' row and the y, column of the transitive closure Warshall[10] which was recently implemented on a systolic
matrix of the graph, T, is expressed as array in 121. It is interesting to note that algorithm in (101,

though it can be derived as a special case of the extended
S- ti(1) graph approach, really solves the problem by performing

recursive computations using forward and backward passes
i.!J through the adjacency matrix.

Before, we proceed to postulate the extended graph
where '.' represents the logical OR operation and 'A' problem per se. we need to define the concept of a t-path
represents the logical AND operation. The above expression (see e.g Ullman[5).
is merely an algebraic statement of the obvious fact that a
path from node i to node j exists if and only if there exists Definition: t-path: A path from node i to node j (or node j
either an edge from i to j (i.e. a, 1) or if there exists a to node i) is said to be a t-path if every node n, that lies
path from to k and k to j for some k. along this path, excluding the end points, has index less

The recursive computation of a matrix as suggested by than t, i.e., it satisfies n < t.

eqn.(l) is similar to certain computations that arise in the
recursive smoothing of digital signals [121. Thus, it is only For the present, we shall be interested in the case
natural to ask whether the techniques used in signal pro. mIrnt.j). This is because a mrn(ij)-path has the important
cessing for solving such problems can be adapted for the property that it is either a direct edge or is composed of a
transitive closure problem. The main objective in this see- mn(k)-path and a min(k,j)-path for some k < min(ij).
tion is to show that this is indeed so. Indeed, choose k to be the maximum node index along the

min(i.jl-path and consider the sub-path from i to k. B
choice. k is larger than any node index in this sub-path
(excluding s) and consequently this is a min(i.k)-path from ,
to k. Likewise, the k to ] path is also a min(k,,l-path, thereby
verifying our statement. Clearly, the converse statement i's
also true. That is, if there is a mn,.ok)-path from , to k and a

T mintk.i -path from 4 to 1 for some k, < ni(nosj), or if there is a
directed arc from , to i, then there is a mnij)-path from i
to j. Writing this up algebraically, we have

t, a:, I ,! . C. (2)

which is merely a mathematical formulation of our earlierstatement. [he above equation clearly shows that the ele-ment c, of the matrix C is dependent only upon elements
Fig.l. The csclic nature of the definition in cqn. (I). FheI that are in the same column above it and in the same row to
iarccncd l in,,dihcate the entries of "r that have to be com- the left of it. (Note its similarity with the so-called
-utcd tn ore the t pica clement marked , can be comput- quarter-plane' two-dimensional recursive filter [13-141.)
ued. In th e trm,, processng hterature [13-141 , t h s would te Thus, the computation of these elements can be performedd.rIn te as;the prcessigof lite recursive ftisoulde b iterativelv startin. from the top left hand corner of the

eferred to as the output mark of the recursive fiter. matrix C and proceeding downwards and outwards.

A close examination of the system of equations defined The existence and uniqueness of the solution to the set
by eqn. (I) reveals that it is impossible to solve the transi- of equations :n (2) can be easily established as shown in

. . . . - - .
. -". '-" _". -- - - - -.-"_ . '".-- .- o _" : " " " -- " " " " 
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[19]. The problem of determining the existence of a i) if there is a path of length 2 from node i to node j, or
minoij)-path from node i to node j for every (i, )) is, there-
fore, quite easy to solve. Moreover, as shown below, this iii) for i > j, if there is a decreasing index path from i to

problem can be solved by means of a regular iterative algo- some k, where i > k > j, and a mn(kl)-path from k to j,
rithmt. thus the techniques developed in [3,41 for analyzing or

these algorithms and for implementing them on mesh con- iv) for j > i, if there is a rni(i.k)-path from i to some k, .
nected processor arrays can be applied. Later in this section, where j > k > i, and an increasing index path from k to
we shall show how to extend the given graph using addi- .
tional v nodes (and some arcs) in such a manner that by If none of these paths exist from node i to node j, then
using the information about the existence of min(ij)-paths in c(ij,,,+ l) will be zero.
this Zv.-nodc extended graph, one can infer the transitive
closure of the original graph. In contrast to the initialization used in Algorithm 1, the

above initialization allows us to obtain more information
a. Determining the Min(ij)-paths of a Directed Graph than just the min(ij)-paths in the graph. Nevertheless, this

The system of equations for determining the min(i,j)-paths extra information is never used in the algorithms described
of a directed graph, given in (2) above, resembles in a in the rest of this section. Thus, if one is interested only in
modified. simplificd form, the set of relations that is usually the min(ij)-paths, in both Algorithm 1 and in the above vari-
associated with 'quarter-plane' recursive filtering in the sig- ation, one could consider c(zj,min(ij)+1) as the outputs of
nal processing literature 13-141. Since this filtering problem

can be solved by means of a regular iterative algorithm [41,
it should be possible to determine the min(i j)-paths of the
graph using an algorithm of the same form. Such an algo- I
rithm is given below:

Algorithm 1: for determining the min(ij)-paths of a
directed graph: For ij,k = I to N do: =

a(ij,k) if j k 
c(ij,k) .' a(ij,k)'b(ijk) if j-k

CI .
CJ

b(ij,k) if i,*k
b(i+l,j,k) = c(ij.k) , a(i,jk)'b(ij,k) if i-k

c(i.j,k-1) = c(ij,k) 1 [a(ij,k)*b(ij,k)] (3) ig. 2: The types of paths detected by Algorithm I with
the initialization of eqn. (5): The nodes are assumed to be

with the initialization arranged in descending order from top to bottom (i.e. N ap-
cars at thc top and I at the bottom). The paths shown are i

a(i,l.k) = 0 from left to right: 1) mini.j)-path, i) path of length 2, iii) a
b(tjk) = 0 ath comprised of a decreasing index tail and a mnt(ij)-path,bnd -) a path comprised of a mjn(i.j)-path followed by an in-c(ij,1) = 2:., (4) 'reasing index tail.

for all .j.k I toN. Then c(ij,.V+1) I if there is a the algorithm. Furthermore, for determining min(i,j)-paths
mmin.)-path from node , to node j and is equal to zero oth- in the graph, one can devise a whole variety of possible ini-
Cr-Wise, tializations of Algorithm 1. To be specific,

Some Variationr: It is possible to relate the above algorithm Theorem 2: If the inputs to Algorithm I are chosen such
to the 'first pass' of the systolic algorithm in [1]. However, that -'-
in [11, the adjacency matrix of the graph is input twice to
the array, once from the left end of the array and once from a(i.j).c(i.j,t) = a, for i > j
the top of the array. In the above algorithm, the adjacency
matrix is input only once, i.e., by initializing cW ,j,). This b0JAic(i.j.1) a for i >

would ind:catc that there may be other possible initializa- cOi,1)[a(i,1,i'b(1.i)] 1 (6)
tions for the algorithm that achieve the same objective. For
example, the initialization of the systolic array in [1] then e .}.,i o will le 1 if tterc is a , n.path from
corresponds to the following: node i to node J and will be zero otherwise.

a(i.l.k) = • '

Theorem 2 opens up several interesting possibilities.
b( .j.,k) =. =,,Thus, for cx-,re, in the systolic array of Gutbas, Kung
c,.i) 0 (5) and I homponj 1, one (toes not nccess'arilv have to input

the admacency n.trix twice, as described by the authors.Instc,u], ,-!,_.m as. , n example, the lo,,er triantular portion ::where it is assumed that a - I. We can show that for this frstoe m:. a ris an he lower the top of the

iniuai~atin.orif n ~n(.5 ctji) s(] f the .:,:c.inc% matrix can he inputfrmteopfthiniitii~ition, or if in tuin. 15) con, is also made equal to arratv ani the uppcr trtanular portion from the left of the
a , the L,orlithm can be used to ohtain more informition array. I !:ice and other variations are discussed in detail in
than 'ut the -iC ./ -piths in the ,raph. In the followin Section IV of this paper.
theorem a wciker version of which appcars in [2I , the
nature of tile pitlis detected by the algorithm for tl;s initial-
izatwn isldcscrfllcd. "b. The Fxtendcd Graph Approach to the Transitive Clo-sure Problem

Theorem 1: If Ajorithm I is executed irth the inittaliza- Knowin! tov to determine the ,n(i.O)-paths in a graph
lion o? cqn. (5), then c j..v -) %ill be I if either usni a rct:ular iterative algorithm, we can now solve the
i) there is a "in,.j)-path from node I to node 1, or transitive closure problem itself. To do so, we shall attempt



to extend the graph in such a manner that, solving the choice A- A A.- A is also valid. Alternately, we
mn(1.f)-path problem for this extended graph is equivalent could firs't determine the minUoj)-path% in the original graph
to solving the transitive closure problem for the Original and use this information for initializing the extended graph.
graph. Even though this idca of extending the domain of Note that once the extended graph is chosen, Algorithm 1
the problem is borrowed from the signal processing litera- or any of its variations can be applied on the extended
ture, the basis for this approach can be independently graph so as to obtain the transitive closure of the original .,

derived using the following simple observation: graph, even though some of the variations described earlier
Given a directed graph with .V nodes, suppose that we determine more than just the ,in(,.;)-paths in the graph. *,!

introduce additional V nodes numbered from (.%'-I) through This is because of the fact (stated in Theorem 3) that for
2s such that node (,,+i) has one incoming arc from node i every path in the extended graph from node (.%',-' to node
and one outgoing arc to node i and no other arcs incident (Nj), there exists a corresponding tran-path. Furthermore,
upon it. For this modified graph, we claim that if there is a since we are only interested in the r.n(.S-t.N-j)-paths. the
miF(.V-i..V .-)-path from node (N-i) to node (N--j), then and transitive closure information is also obtained as
only then is there a path in the original graph from node i c(N+i,N+j,N-mm(itj).l = t.'
to node j. This sf'atemcnt is easily verified since all paths The above statements were made without taking into
between these two nodes have to pass through node i and consideration the structure of the extended graph. Using the
node j, and since every path in the original graph between structure in the graph, one would hope that determining the
node i and node j has to be part of a min(,V-,N+j)-path existence of m.n(,-,,..'-j)-paths from node (.V-i) to node
between node (.''i) and node (.V,+j). (N-j) is 'easier' in some sense. Indeed this is true due to the

following result:
The :v-node extended graph described above has an

adjacency matrix A, given by Theorem 4: If Algorithm I is executed on any member of

[A t](7 t he family of extended graphs characterized in Theorem 3,=t t(7) thn

a) For i.j -! N, if i -j, and if there exists a ma.(i.j)-path
where I is the (NVxv) identity matrix, from node i to node i in the original graph, then

This is a rather simple extension of the original graph b) For L,-/ N, if j > i, and if there exists a 1a.(ij)-path
and was derived using heuristic arguments. Instead, one can fo o d t nd in the origina rap th

pose the the extension problem formally as follows: from node i to node , in the original graph, then

The Extension Problem: Given an N-node directed graph c) Finally, c(N.-i,,v'-jN+l) = t , for all ij 5 N.
with adjacency matrix A, determine an extension of this
graph with adjacency matrix With this theoretical background established, we can state

A A the basic algorithm for detcrmining the transitive closure of
A- A (g) the given graph using the extended graph approach. Later,

A we shall particularize the algorithm to certain special cases

(and deduce some variations) so as to obtain, e.g., the algo-
with appropriate (NxN) matrices A:. A: and A:: such that rithms reported in [1,21.
for i.1 V, there is a mn(.V-i,.V-.)-path from node (.,i) to
node (.,-j) in the extended graph if and only if there is a Algorithm 2:(for determining the transitive closure of a
directed path from node i to node j in the original graph. directed graph):

i. Choose an extension of the graph using Theorems 3,4.
Characteri, ation of Useful Solutions to the Extension ii. Execute Algorithm 1 for the extended graph with adja-
Problem: cency matrix A and over the index space ia , 1 to 2N

An useful solution to the extension problem is one that and k = 1 to mrn(i,JN).
can be 'easily' inferred from the original graph. Here, we iii. Determine the transitive closure, {t.}, of the original
shall assume that the extension can be easily inferred if it graph as { c(.Vi,N1j,N 1)} for all ij '!! N.
can be deduced from the adjacency matrix of the graph or
from the rn(.j.-paths in the graph. Such a family of solu-
tions to the extension problem can be characterized as fol- . Some Variations of Algorithm 2 and Some Special
lows: Graph Extensions

Theorem 3: A graph with adjacency matrix given as in cqn. Given the basic algorithm for solving the transitive clo-
(17) is a solution to the extcnsion problm sure problem, i:. Algorithm 2, one can easily come up with

variations bascd on some simple observations. In this
A. I A manner, %%e shall presently show how to deduce the algo-

A I A- rithms ) iven in I11 and [21 as special cases of the extended.... graph approach.

A: i - A:: (9) Suppose that A!2orithm 2 is executed and the values of
c(s . .,.tnu....') - ) are collected in matrix form in the obvious

and order, for .I - I to -''. Call the resulting tZN % ') matrix C,
and partition it into N ,,vJ blocks as

A T - A. T - A.. t - T (10)

where the R (f iso matrices indicates the tern by term
le:::;Cl . o !ic:r critr:ev. Furthe~r. m this CX!Crnd olraph.
the ex:s1c ce ,it . pith from node % -, to notde ; Then, from Thcorem 4, it is known that
imp:es the cx,-cnce of a nn,(, -, ..-.- -pith from node C.. T (12)
(.v - ) in o dcJ '° ,.-

the extended i'r.o.ph can be chosen in several wavs. For and
instanc , the choce A A , -A - I that we dIscusSCd car- C. xC . T (13)
her. satisfics the conditions ;n ihcorem 3. Likewise, the



w--

where the symbol 'x' signifies the logical product of the the graph, one can instead use c(i,j,min(ij,.) -). This
two matrices. (The logical product is the same as the usual reduces the total amount of computation by approximately
matrix product except that scalar addition is replaced by the N3/3 logical AN!) and logical OR operations. Next, in
logical OR operation and scalar multiplication by the logical Theorem 5, we showed that we do not need to compute the
A.,D operation.) Furthermore, we know that matrices C: and C. entirely. Only the lower triangular por-

C-.T C-.T T (14) tion of C and the upper triangular portion of C: are of
- "relevance. This further reduces the total computational

effort by about N.3 logical operations. Thus, using these ;
and from the definition of the transitive closure matrix, theorems, we have reduced the computational effort from

TxT T (15) 8Ni';3 operations to 2.,N3 operations. Nevertheless, for a
sequential implementation, this is still about a factor of 2
greater than the computational effort required for

Therefore, one can show that Warshall's algorithm[10. However, Warshall's algorithm
can be derived using the extended graph approach by eon-

C-C. C C_ T (16) sidering the graph extension for which A . A., A-. = A.
An examination of the operation of Algorithm 2 for this
extension of the graph reveals that some of the intermediate

Now, in Algor;thm 2, if it is applied to the extended graph variables computed by the algorithm are identical and there-
without modification, one evaluates C- and C:. separately fore the computation of these variables need not be
and then finds the logical product of the two to determine repeated. In the algorithm, c(N+,.N+j,N+I) is obtained by
the transitive closure of the original graph. However, computing iteratively for k t to -

eqn.(16) implies that we do not need to determine these c(.Vi,N'rj,k~l) = c(NVi.N+j,k)i
matrices separately. The logical OR of these matrices is suf- [a(NVi.N-jk)'b(S~i,N-jk)]  (20)
ficient for our purpose. This observation is, in spirit, the a-(
basis of the systolic transitive closure algorithm of Guibas,
Kuniz and Thompson[l], though these authors do not derive Now, the variables a(V+i.Nj.k) and b(.V-i..V+j,k) in eqn.
their algorithm using such considerations. (20) are really dummy variables that represent c(Si,k,k-l)

Certain choices of the extended graph are natural' and and c(k.N4-j.k-+l) respectively. However, for the special
Cedtinchoied oftin some detail. Thus, the choice choice of the extended graph under consideration, we can

need to be examined previ us, is chie show after some algebraic manipulations, that
A A. t-- , discussed previously, is a simple and c(,V-i.k.k+ 1) c(N+i,N+k,k) and c(k,,%+j,k+ t) = c(NkV+j,k) .
straight-forward solution to the extension problem. For and therefore,
such a choice, the matrix 2, defined above, is such that C -
is lower triangular with ones on the diagonal, and C- is c(N+iN+j,k+l) = c(N-i,NV-jk),

upper triangular with ones on the diagonal. This fact can [c(N+iN-kk),c(N+kN-j,k)j (21)

be easily verified using the observation that c(N+ijj+1) is 1
if there is a mtn(.v-i.j)-path from node (.V+i) to node j in the This is precisely the transitive closure algorithm due to
extended graph and is 0 otherwise. Now, for the above Warshall 1t) ( a shortest-path version of the algorithm is
choice of the extended graph, any path from node (N'i) to due to Flovd[Ill and a minor modification of the algorithm,

* node ) has to pass through node i and therefore, if i > j, all in its shortest path version. is attributed to Dantzig[15]),
Sthese paths arc not min(s'-ij)-paths. Hence c(N+ij~jl) = 0 which was recently implemented in a systolic array by Kung
for i > j, which substantiates our statement that C. is upper and Lo[2].
triangular. Similarly, one can conclude that C .islower tri- Clearly, for a sequential implementation, the above
angular. algorithm requires ' logical OR and logical AND operations

For this particular choice of the extended graph, the which implies a factor of two reduction in computational
matrix C- is lower triangular while the matrix C, is upper effort. Nevertheless, the amount of parallel time (from
triangular. However, for any arbitrary choice of the exten- first input to last output) required for the (NvxV) systolic
sion. these matrices need not be triangular. Nevertheless, array in [11 and the (,'x,) systolic array in [21 is the same
we can show that the relevant triangular portions of the and equal to 5.v. This is because Warshall's algorithm
resulting matrices are of interest because of the following requires forward and backward processing of the data (both
theorem. increasing and decreasing ij indices) whereas in the general
Theorem 5: For any choice of the extended graph satisfying case, in Algorithm 2, the data is always propagated in the
Theorem 3, lt forward (increasing ij indices) direction. Thus, in order to

C L I -implement Warshall's algorithm on a systolic array, the
authors in [21 had to introduce a feed-back loop which
renders the iteration interval, i.e., the time between succes-
sive data sam lcs, to be 3, whereas the iteration interval for

C-. L... I .: (17) the array in [I] is i. Thus, the total time taken is the same
in both cases, even though the systolic array in [11 requires

where the L's are lower triangular and U's are tipper tri- three passes for computing the transitive closure, whereas
angular ratrices. Icfine the array in [21 requires only one pass.

L I

Implementation of the Regular Iterative Algorithm

U - U•. (18) Followint, the procedure given in [3,171, let us define a
number of 'paralicl itcration steps' for the algorithm in the

Then. -he transitne closure of the original graph, T is given following fashion: at iteration step t, variables a(ij ,k),
by b(sj.k) and cf,.j.k) will be computed if i-j-k r. The

T U Uxt, (19) expression ti - is the so-called linear scheduling functionfor these variablcs 131, since it maps each variable at any
index point into i unioue iteration step. Furthermore, the

Notice !ow the structurc( of the extended graph has computatiton of the variables at iteration step t rcquires, as
been uwcd to rcduce the computational effort invoi cd in input, the values of variables that are computed at iteration
Algorithm 2. 1hus. in Iheorcm 4, we showed that instead step t-1. since e.g.. a .j-A is dependent upon aoj - l,k) and
of considcr:n ,- c.j.mn(idj)-i for the transitive closure of so on. Thercfore, if we can schedule the computation of the



II - it .- p ., - i , + - , - . - . - . • . , • .

aloih s that all variables at step t-I are computed
before we proceed to step t, then all precedence constraints
will be satisfied.

Having obtained the linear scheduling functions for the " L.
algorithm, we can now proceed to systematically implement F-t I-
Algorithm 2 on a mcsh-connectcd processor arrav using the t-
techniques dcscribed in [4,171. To do so, note that the
index-space for Algorithm 2, i.e. the span of the indices _
{i.j,k} for the variables in the algorithm, can be described by t t ._. .. ,.
the set of constraints

max(i,,V)-N+ 1] s j ! [ min(N,i)--N ] , ,

1! k s [min(ij,N) ] (22) Fig.4: A processor array with 3.N: processing elements:This array is obtained for the iteration space [0 0 1].

where the variation of Algorithm 2, suggested by Theorem
5 is assumed. Thus, a streamlined version of Algorithm 2
has the index space shown in Fig.3. Any point with integer
coordinates (ij,k), that lies within this space, is referred to
as an index point. The index point (ij,k) conceptually L.1
represents the computation described by the iteration unit
of the algorithm. Thus, at this index point, the variables
a(i.j.k), b(i.j.k) and c(i.j,k) are made available to the algo- L
rithm and after some time, the variables a(i,j-'-l.k), b(i-t-lj,k)
and c(ij,k-l) are computed and sent to the appropriate
index points. I

Fig. 5: The processor array obtained by multiplexing dis-
jointly active processors in the array of Fig.4: For a partic-
ular choice of the extended graph, this array reduces to that
described in reference Ill.

[4] H.V. Jagadish, S.K. Rao and T. Kailath. 'Multi-Processor
Architectures for Iterative Algorithms,' submitted to
Proceedings of the IEEE, 1985.

[51 J.D. Ullman. Computational Aspects of VLSI, Computer Sci-
encc Press, Rockville, MD, 1984.

161 R.C. Backhouse and B.A. Care., 'Regular Algebra Applied
to Path-Finding Problems,' J. Inst. of Math. AppI., 1975.

ig.3: The index space for a variation of Algorithm 2: The [7] B.A. Carre, Graphs and Networks, Clareodon Press,
thrce dimensional solid shown above is specified by the set Oxford, 1979.
of constraints in eqn.(22). I [81 S.K. Abdali and B.D. Saunders, 'Transitive Closure and

Related Semiring Properties via Eliminants, to appear InJust as an example, let us now assume that all variables reted Sm peries v i t a r
with the same k-index are executed by the same processor. Theoretical Computer Science. 1985.
In terms used in [3,41, the iteration-space is [0 0 1]. This [9] L.R. Ford and D.R. Fulkerson, Flows In Networks, Prince-
defines a two-dimensional processor array (shown in Fig.4) ton University Press, 1962.
with approximately 3N- processors. In this array, the a and 1101 S. Warshall, 'A Theorem on Boolean Matrices,' J. ACM,
b values are propagated to the neighbouring processors 1962.
while c(i,j.k) represents a register value that is updated [111 R.W. Floyd, 'Algorithm 97: Shortest Path.' C. ACM. 1962.
within processor at location ([j). 121 L. Ljung and T. Kailath. 'A Unified Approach to Smoothing

In the array shown in Fig.4, the processor at location Formulas,' Automaiica. 1976.
(ij) computes all variables with index (i,jk) at 'time'
(i*--j-k). Using this fact and by examining the set of con- [13] D.E. Dudgeon and R.M. Mcrsereau, Multidimensional Dizi-
straints that determine the index-space, one can argue that tal Si.nal Processing, Prentice-all. Englewood Cuffs. NJ,
the processors at locations (i4), (i+N,j) for i T I N, (,j ',') 1984.
for -i -5 N, and at location fi+N,.N) are active during [14] W.K. Pratt. Diital Image Processing. John Wiley and Sons.
disjoint intervals of time. The operations of all these proccs- New York. 1978.
sors can therefore be simulated on a sinile one; the result- 1151 G.B. Dantz:g, 'All Shortet Routes in a Graph', O',erations
inf array, shown in Fig.5, is precisely the array derived in Reserch Iouve. Szantord University Tech. Rcp. No 66-3.

Nov. 1966.
[161 ,i.J. Baker, 'A Note on Multiplying Boolean Matr:ces.,' C.

ACM. 1962.
Refereinces K17] S.K. Rao. 'eRular Ierative A!gorithms and 'he:r Imple-

11 L.. uibas. H.. Kung and C.D. Thompson 'Direct VLSI mcnations on l'roccssor Arrays. Ph. D. Di'erti:,on, ISL.
lmpler.entauon of Combibnatorial Algorithms.' Proc. Cal- S:a,',rd L'norersiiv. Sia.frd, C.494.05. Sept. 19X 5.
Tech Conference on VLSI, 1979. [181 R.M. Karp. RE. Miner and S. Winograd 'The Organiza-

[21 S.Y. Kung and S.C. Lo. 'A Fast Systoic Algorithm for t;on of Compitations for Uniform Rcurrence Equations,'
Transitive Closure Problem,' Proc. of the ICASSP. 1985. J.AC.1,. Jul.l,7.

[31 S.K. Rao. H. V. Jagadish and T. Katlath. 'Analysis of Itera- 1191 S.K. Rao, T.K. Citron and T. Kailath. 'Mesh-Connected
tive Algorithms for Multiprocessor Implementations, submit. Processor Arrays for the Transitive Closure Problem,' Sub.
ied to the IEEE Trans. on Circuits and Systems. 1985. mmed to J. ACM. 1985.

. . . - . . ,. -.. .. .... ... *
," - " - "" -" • . _ . . _. - .- " . , ' ", - ,, ', _ r " - - - ; , ' m



-. -~ -. - - - . . . - . .

I

I
I

E.

I,


